Problem 1.17

Figure 1.28 shows a circuit with four elements, $p_{1}=60 \mathrm{~W}$ absorbed, $p_{3}=-145 \mathrm{~W}$ absorbed, and $p_{4}=75 \mathrm{~W}$ absorbed. How many watts does element 2 absorb?

Figure 1.28
For Prob. 1.17.

Solution

By the law of conservation of energy, the total power absorbed in a circuit must be equal to the total power emitted at any time, that is,

$$
\begin{array}{r}
\sum p=0 \\
p_{1}+p_{2}+p_{3}+p_{4}=0 \\
(60 \mathrm{~W})+p_{2}+(-145 \mathrm{~W})+(75 \mathrm{~W})=0
\end{array}
$$

Therefore, solving for p_{2},

$$
p_{2}=10 \mathrm{~W} .
$$

